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L iquid Crystals, 1997, Vol. 23, No. 1, 93 ± 111

Pattern formation and non-linear phenomena in stretched discotic

liquid crystal ® bres

by L. WANG² and A. D. REY*³

² Department of Mathematics and Statistics, McGill University,
805 Sherbrooke Str. W., Montreal, PQ H3A 2K6, Canada

³ Department of Chemical Engineering, McGill University, 3480 University Str.,
Montreal, PQ H3A 2A7, Canada

(Received 24 January 1997 )

This paper presents a non-linear numerical and bifurcation analysis of pattern formation
phenomena in a discotic nematic liquid crystal con® ned to annular cylindrical cavities and
subjected to extensional deformations. The results are of direct relevance to understanding
the industrial melt spinning of mesophase carbon ® bres, using discotic nematic liquid crystals
precursor materials. Three types of orientation patterns are identi® ed in this study: spatially
constant (radial ), monotonic (pinwheel ), and oscillatory (zigzag) . Numerical and closed form
analytical results predicting continuous transformations between the radial, pinwheel, zigzag
radial orientation modes are presented. The bifurcation analysis provides a direct characteriza-
tion of the parametric dependence and the transitions between these three basic patterns, and
provides a complete understanding of the multistability phenomena that is present in the
oscillatory orientation patterns. In general it is found that small ® bres of nearly elastically
isotropic discotic nematic liquid crystals tend to adopt the classical ideal radial texture, while
larger ® bres with anisotropic elastic moduli tend to yield the zigzag texture. Fixed arbitrary
surface orientation of intermediate size and anisotropy tend to adopt the pinwheel texture.
The theoretical results are able to explain the main features and mechanisms that lead to the
commonly observed cross-section textures of industrially spun mesophase carbon ® bres.

1. Introduction onion pattern, homeotropic for the radial, and arbitrary
for the zigzag. It should be noted that in actual ® bresThe industrial fabrication of mesophase carbon ® bres

[1 ± 3] is based on the melt spinning of discotic nematic the defect gives rise to a macroscopic isotropic core,
apparently much larger than the typical molecular sizeliquid crystals into micron-sized cylindrical ® laments. As

in other man-made organic ® bres molecular orientation of nematic disclinations [5]. The radial zigzag pattern
observed in actual ® bres [6] has a position dependentis a key parameter that dominates the mechanical prop-

erty pro® le. For disk-like molecules the distinguishing amplitude and wavelength but the basic textural feature
of interest is the radially oscillatory trajectories of themolecular direction is the unit normal to the molecular

disks, and the average orientation characteristic of nem- molecular planes.
atic ordering arises from the close alignment of the
molecular unit normals. During ® bre spinning, a uniaxial
extensional stretching ¯ ow orients the longest molecular
dimension of the disk-like molecules close to the exten-
sion (¯ ow direction), such that the average molecular
orientation is normal to this direction, and contained in
the plane normal to the ® bre axis. Thus any spun
mesophase ® bre cross-section displays a planar orienta-
tion. A variety of planar orientation patterns have been
frequently reported in the literature, including the onion, Figure 1. Schematic representation of the average molecular
radial, and zigzag radial patterns, shown in ® gure 1 trajectories in the cross-section of mesophase ® bres

observed during industrial spinning process (see Pencock[4]. The patterns shown contain a line defect along the
[6], Peebles [7] for more details). The lines here represent® bre axis, while the surface orientation is planar for the
the curves orthogonal to the average molecular orientation
(director), de® ned in ® gure 2, and are thus tangent to the
planar disk-like molecules.*Author for correspondence.
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94 L. Wang and A. D. Rey

The selection mechanisms that drive the pattern cavities [11] shows oscillatory solutions for non-
homeotropic boundary conditions. However, due to theformation in mesophase ® bres spun from discotic nem-

atic liquid crystals are at present not well understood, shortcomings of linearization, the bifurcation and mul-
tistability phenomena, due to non-linearity of the elasticbut due to strong structure± properties correlations they

are essential for product optimization. On the other free energy model, remained unexplored. In this paper,
we overcome the above mentioned shortcomings ofhand, the closely related problem of pattern formation

in cylindrical cavities ® lled with rod-like nematics is previous works and give a complete analysis of planar
textures of con® ned nematics in cylindrical cavities. Non-better understood [7, 8]. In the latter case, theoretical

predictions using energy minimizing models, are able to planar pattern formation as well as planar pattern
formation with o� -axis singularities in rod-like nematicsreproduce many observed patterns. Below we show that

similar elastic minimization mechanisms are able to con® ned to cylindrical cavities have also been character-
ized using energy minimization model [12]. Neverthelessexplain the pattern formation phenomena in discotic

nematic ® laments subjected to ideal extensional ¯ ows. these works do not consider the planar patterns
studied here.Previous work [9] on pattern formation in con® ned

discotic nematic liquid crystals mainly focused on predic- The objective of this paper is: (1 ) to reproduce and
explain the main pattern formation phenomena that aretions of the radial and radial zigzag patterns, using a

simpli® ed linear analysis. The analysis predicted that observed during the spinning of carbonaceous meso-
phase using well established liquid crystal elasticityoscillatory pattern arises due to the anisotropy that

characterizes the planar elastic deformation modes, but models; (2 ) to provide a comprehensive characterization
of planar orientation patterns of discotic nematics liquidonly if the outer boundary conditions are not homeo-

tropic. Thus the only transformation leading to a zigzag crystals subjected to ¯ ow; and (3) to establish the main
bifurcational and non-linear phenomena present inpattern involves a bifurcation of the pinwheel pattern,

also known as the magic spiral [5], in which the discotic nematics in cylindrical cavities.
This paper is organized as follows. § 2 deals with themolecular trajectories follow a pinwheel pattern (see

® gure 4). This is obviously in disagreement with experi- elastic modes of discotic nematics, and discusses the
elastic anisotropies in planar orientation patterns. § 3ments [6], where the surface orientation can be arbitrary

and in fact it is ill-de® ned [6]. In addition, the linear presents the mathematical model that describes steady
state planar orientation patterns in cylindrical cavitiesanalysis of [9] is only valid for small director distortions,

and it also predicts unbounded oscillations for certain in the presence of ® xed boundary conditions. Equations
that validate the planarity assumption in the presencecritical values of the ® bre radius, which is again unphys-

ical. The above shortcomings indicate an incomplete of extensional ( ® bre spinning) ¯ ow are presented.
§ 4 presents the numerical results and discussion. Theknowledge of what parameter envelopes lead to speci® c

patterns in stretched discotic nematic liquid crystal results are organized and classi® ed along the values
of the governing parameters. Closed form bifurcation® laments. To develop a complete picture of pattern

formation in con® ned discotic nematic liquid crystals thresholds, bifurcation diagrams, and stability diagrams
are presented. A summary of the main features of thehere we focus on orientation patterns that arise from all

possible continuous transformations of the ideal radial pattern formation phenomena is also included.
pattern, in which the molecular disks follow radial
trajectories (see ® gure 4). In addition since the isotropic 2. Elastic modes of discotic nematics liquid crystals

In this section we describe the main features of nematiccores found along the ® bre axis are in practice of
macroscopic size, we study con® nement in an annular elasticity for discotic nematics in cylindrical cavities

displaying planar (2D) textures, and use them to identifygeometry [6].
For rod-like liquid crystals, previous work on planar the elastic modes in typical mesophase carbon ® bre

textures. Figure 2 shows the molecular geometry, posi-textures of con® ned nematics in cylindrical cavities [10]
proved the existence of spatially oscillatory solutions to tional disorder, and uniaxial orientational order of the

model uniaxial discotic nematic liquid crystal consideredthe equilibrium equation, and also established the
stability properties of the solutions. In [10] it is pre- in this paper [5]. The partial orientational ordering of

the molecular unit normals u is along the averagedicted the existence of an in® nite number of oscillatory
solutions for homeotropic boundary conditions when orientation or director n (n ¯n =1 ), and di� ers from that

of rod-like molecules in that u is along the shortestthe two relevant splay± bend elastic constants are di� er-
ent, which in general disagrees with the multiple bifur- molecular dimension. This geometric di� erence is the

source of the reversal in the ordering of viscoelasticcation and multistability phenomena in cylindrical con-
® ned geometries as shown below. Analysis of the linear- [13, 14] as well as other properties [2], that arise when

comparing disk-like and rod-like uniaxial nematics. Thisized model for con® ned rod-like nematics in cylindrical
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95Pattern formation in stretched discotic L Cs

Figure 2. Orientational ordering in the uniaxial discotic nem-
atic phase. The molecular normals u of the randomly

PR PPW PZR i

i=h: homeotropic

i=n: non-homeotropic

Orientation (h(r)) constant monotonic periodic

Characteristics h= p /2 sign{h © © } º const. h( ln r)=h( ln r+l)

Outer BC ho= p/2 ho ¹ p/2 chiral ho ¹ p/2

achiral ho=p/2

Deformation bend splay-bend splay-bend

Radial Pinwheel Zig-Zag

positioned disk-like molecules, partially orient along the Figure 4. Schematics of a planar radial pattern (PR), the
director n. planar pinwheel pattern (PPW), and the planar zigzag

radial pattern (PZRi; i=h: homeotropic, i=n: non-home-
otropic). The text below the schematics summarizes the

paper is restricted to the study of planar patterns, main features of each pattern.
containing splay and bend deformation [5]. Figure 3
shows the splay mode of modulus K1 , and the bend
mode of modulus K3 . Note that in contrast to rod-like transverse texture ( left) and a radial zigzag texture

(right), typically oberved in mesophase carbon ® bresnematics, for disk-like nematics the bending disks traject-
ories give rise to splay deformation ( left ® gure), and the [4, 6]. The full lines indicate the disks trajectories, which

are locally orthogonal to the directors. Based on oursplaying disks trajectories give rise to bend deformation
(right ® gure); by disk trajectory we mean the curve previous discussion, it follows that the radial texture of

a uniaxial discotic nematic, de® ned by n
y

(r)=1 andlocally orthogonal to the director. Using a circular
cylindrical coordinate system (r, y, z) , the z-coordinate is rc < r < ro , contains a pure bend mode. On the other

hand, a radial zigzag texture consists of a mixed splay±along the ® bre axis, and the transverse plane is spanned
by the azimuthal direction of (y) and the radial (r) bend deformation mode, and in addition n

y
( 1 ) Þ 1. A

comparison of the two schematics shown in ® gure 4direction; here 0 < y < 2p and rc < r < ro , where rc is the
isotropic core radius, and ro is the outer radius which indicates that if the radial zigzag texture is selected over

the pure radial texture then the trade-o� of bend byfor typical mesophase carbon ® bres is in the micron size
range. In this cylindrical geometry, the stationary radi- splay in the oscillatory pattern must be energetically

favourable, as quantitatively shown below.ally dependent planar director ® eld of ® gure 1 can be
parametrized as n (r)= (nr , n

y
, nz ) = (cos h, sin h, 0 ) ; here For low molar mass discotic nematics, theory [13]

and experiment [15] show that K1>K3 . An increase innz=0 means planar orientation and absence of twist
deformations [5]. Figure 4 shows schematics of a radial the molecular weight of disk-like nematics, just as for

Figure 3. Schematics of the elastic splay deformation ( left) and bend deformation (right) for uniaxial discotic nematics. Note that
the splay (bend) mode involves bending (splaying) of the disks trajectories, in contrast to the case of uniaxial rod-like nematics.
A disk trajectory is a curve locally orthogonal to the director.
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96 L. Wang and A. D. Rey

rod-like nematics [16], can be expected to reverse the where V is the total volume. Expressing the director n

in terms of independent variables q i, and taking the ® rstordering of the elastic constants, so that for higher
molecular weight discotic nematics, like carbonaceous variation of the total free energy integral, we obtain the

Euler± Lagrange equilibrium equation:mesophases, we can expect K3>K1 . Thus, just as poly-
meric rods avoid the splay of the radial texture by
introducing director oscillations [10, 11], polymeric dF

dn
=

q f

qn
Õ V¯

q f

qn ¾
=0 (3)

disks avoid the bend of the radial texture of a zigzagging
director ® eld [9]. where V=q/qq i and n ¾ =qn/qq i. We assume that the

pattern is rotationally symmetric in the cross-section
3. Governing equations

y Õ r plane, such that the director n would be only a
To establish the origin of planar orientation textures function of the radial distance (r) from the axis of

we ® rst discuss the e� ect of an external extensional ¯ ow rotational symmetry. The total free energy is
in the z-direction on the texture formation in the y Õ r

plane. The non-zero components of the rate of deforma-
F = PL

F2d dr (4 )tion tensor A ij for an extensional ¯ ow are [17]: Azz=
Õ Arr=eÇ , where eÇ is the extension rate, and the vorticity

wheretensor for this irrotational ¯ ow is W =0. At steady state,
the viscous torques C u acting on the director are C u=
Õ n Ö (c2 A ¯n), where the c2 is a torque coe� cient [5]. F2d=2p P

R
o

R
c

f r dr=2p P
u
o

u
c

f An,
dn

du
, uB du (5 )

As is well known [18], in this ¯ ow the stable director
orientation is normal to the extension direction (i.e. is the free energy per unit length, and u = ln (r/rc ) .
transverse y Õ r plane), and therefore C u=0. Thus the Equations (4) and (5) show that the numerical value of
net e� ect of the extensional ¯ ow on the texture formation the total free energy per unit length depends on f . In
is to keep the director in the y Õ r transverse plane. polar coordinates, the director n is expressed by the
Therefore, we may conclude that, given su� cient long polar angle w as
process times as compared to reorientation times, the
transverse radial zigzag pattern is selected by the minim- n(w) = (cos w, sin w, 0 ) (6 )
ization of the splay± bend elastic free energy per unit

where w is position dependent, w=w(u) , and the unit® bre length. If the inequality in the time scales does not
length restriction n ¯n =1 is satis® ed. In terms of thehold, the assumption of planarity does not generally
generalized variable u , the equilibrium equation becomeshold. In actual typical ® bre spinning process there is

ample evidence that shows that the process time is q f

qw
Õ

d

du

q f

qw ¾
=0 (7 )greater than the director reorientation time, so that the

planar orientation assumption is realistic, and always
where the prime denotes di� erentiation with respect to u.observed [4, 6].
This is the governing equation in this analysis. UsingSince the viscous torques C u due to the extensional
the expression of n of (6) in (3), we have¯ ow acting on the director n vanish with planar orienta-

tion (nz=0 ), the selection of the pattern is just dictated
by a minimization of the Frank [5] elastic energy due f =

K1

2
{cos2 w Õ 2w ¾ sin w cos w+w ¾ 2 sin2 w}

to, at most, splay and bend modes. The equilibrium
equation for the director of discotic nematic liquid

+
K3

2
{sin2 w +2w ¾ sin w cos w+w ¾ 2 cos2 w}. (8 )crystals is derived from the extremum condition of the

free energy. Since there are no twist deformations in
planar orientation, the Frank elastic energy density Taking the variation of above expression of the free
reduces to [5]: energy density, we obtain the equilibrium equation,

sin w cos w{ Õ K1+K3 } + sin w cos w{ Õ K1+K3 }w ¾ 2
f =

1

2
{K1 (V¯ n)2+K3(n +VÖ n)2} (1)

+{ Õ K1 sin2 w Õ K3 cos2 w}w ² =0. (9 )
where n is the director. Note that saddle± splay elasticity

Scaling with K3 we get(K12 ) plays no role in planar patterns. Thus the total
free energy is given by sin w cos w{( 1 Õ m) ( 1 +w ¾ 2)} Õ {cos2 w+m sin2 w}w ² =0

(10)
F = P

V

f du (2 )
where m =K1 /K3 . The boundary conditions studied here
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97Pattern formation in stretched discotic L Cs

are we show a sketch of the orientation pro® les, and the
main signatures of each pattern. The planar radial (PR)
pattern has a pure bend deformation and the outeru ( 0 ) =

p

2
and u (uo ) =wo . (11)

boundary condition is homeotropic (w(uo ) =p/2). The
planar pinwheel (PPW) pattern, also known as theThe solution to (10, 11) is w(u) and the parameter vector
magic spiral [5], has monotonic splay± bend deforma-is p = (m, w(uo ) , Du) . The deviation of m from 1 denotes
tions, and arise with non-homeotropic (w(uo ) Þ p/2)elastic anisotropy, the deviation of w(uo ) from w( 0 )
boundary conditions. The planar zigzag radial (PZRi)introduces asymmetric boundary condtions, and Du is a
pattern has periodic splay± bend deformations and mayscale of ® bre size such that increasing (decreasing) Du
occur with homeotropic (i=h) or non-homeotropic ( i=represents smaller ( larger) ® bre cavities.
n) outer boundary conditions. Figure 5 shows a blockThe equilibrium equation (10) is a non-linear second
diagram that summarizes the transformation pathsorder ordinary di� erential equation. For symmetric
between the three orientation patterns. The ® gure showsboundary conditions of w ( 0 ) =w(uo )=p/2 (w( 0 ) =
that the radial pattern can be transformed into thew(uo ) =0 ), the trivial solutions of w=p/2 (w=0 ) exist
pinwheel pattern by changing the outer surface orienta-for all values of m. For asymmetric boundary conditions,
tion (T1 ). The radial pattern can also be transformedi.e. w( 0 ) Þ w( 1 ), previous work [9] has shown the exist-
into the homeotropic zigzag radial pattern (PZRh) byence of oscillatory solutions when the elastic constants
temperature changes (increase in elastic anisotropy) orare not equal (m Þ 1 ), using a linearized equilibrium
by increasing the ratio between the outer and the innerequation. Here we complete this work, by carrying out
radius (Du) . Similarly, the pinwheel (PPW) pattern cana full analysis of the non-linear equation (10).
be transformed into a non-homeotropic zigzag radialGiven the possibility of multistability and solution
pattern (PZRn) by the change in temperature and bymultiplicities, generic in non-linear equations, we com-
increasing Du. The transformation between homeotropicpute all equilibrium points of equation (9) using an
and non-homeotropic patterns are achieved by changinge� cient root ® nder based on the shooting method [19].
the outer surface orientations.Brie¯ y, we rewrite the governing equation (10) as two

Figure 6 shows a summary of numerical simulation® rst order di� erential equations system:
results of the orientation w (rad) as a function of dimen-
sionless distance u , for Du=1. These results summarize
the T1 and T2 transformations. Starting with the top left,

w ¾ =y

y ¾ =
(Õ m+1 ) sin w cos w( 1 +y2)

m sin2 w+cos2 w
.

(12)
the panels towards the right correspond to increasing
elastic anistropy (m=K1 /K3 ) and the panels towards

The boundary conditions are the bottom correspond to increasing values of outer
cylinder surface orientation (w(uo )). The orientation

w( 0 ) =
p

2
and y ( 0 ) =p (13) changes in the di� erent panels of the ® gure clearly re¯ ect

the transformation paths shown in ® gure 5. Moving
towards the left in the top row corresponds to the T2where p =w ¾ ( 0 ) is a new parameter. By introducing the
transformation of the radial pattern (PR) into the home-new parameter p, we consider the value of w (uo ) as a
otropic zigzag radial pattern (PZRh). Moving towardsfunction of p, once m is ® xed. We next perform a
the left in the middle and the bottom rows correspondnumerical study using a fourth order Ronge± Kutta
to the T2 transformation paths of planar pinwheel pat-method [19]. By solving for p for a given value of w(uo ),

tern (PPW) into non-homeotropic zigzag radial patternwe are able to ® nd all the stable as well as unstable
(PZRn). Moving down corresponds to the T1 trans-solutions of equation (10). The numerical study identi-
formation between (PR) and (PPW) patterns ( left® ed all the solution branches and their parametric
column), and also the T1 transformation between (PZRh)dependencies on the outer boundary condition w(uo ),

and (PZRn) patterns (right column).and elastic anisotropy m, for a given value of uo ).

Figure 7 shows the corresponding summary of the T1

and T3 transformations. In ® gure 7 the elastic anisotropy4. Numerical results and discussions

The numerical solutions found in this study are natur- is ® xed at m=0´15, and left column represents the
patterns for Du =1, while the right column representsally classi® ed and characterized by the symmetry proper-

ties of the director ® eld. Figure 4 summarizes the the patterns for Du =3. Moving from top to bottom in
the left column corresponds to the T1 transformationclassi® cations of the three classes of planar patterns

arising in discotic nematics in annular cylindrical cavities between (PR) and (PPW) pattern, and moving vertically
on the right column corresponds to the T1 transforma-with surface orientation at the inner radius ® xed at p/2.

Below each descriptive name (radial, pinwheel, zigzag) tion between (PZRh) and (PZRn) pattern. Moving on
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98 L. Wang and A. D. Rey

Figure 5. Block diagram of the transformation paths between planar radial (PR), planar pinwheel (PPW), and planar zigzag
(PRZ) patterns. T1 corresponds to the surface orientation change, T2 corresponds to temperature change, and T3 to ® bre
radius change.

the top row corresponds to the transformation T3 tions with one-half-wavelength C, two-wavelength, two-
half-wavelength and so on. Figure 8 clearly shows thebetween (PR) and (PZRh) patterns. Moving along the

bottom row corresponds to the transformation T3 strong non-linear features of the model, with typical
multiple bifurcations of the spatially constant solutionbetween (PPW) and (PZRn) patterns.
(PR) into a family of spatially oscillatory solutions
(PZRh) at critical values of elastic anisotropy ratio mc,n4.1. Solutions with symmetric boundary conditions

With symmetric homeotropic boundary condition of (n=1, 2, . . . ). For a given m, the number of the intersec-
tions of the amplitude curves with a vertical line givesw( 0 )=w ( 1 ) =p/2, the radial (PR) solution (w=p/2)

exists for all m, as shown in the previous section. For the number of solutions, which for Du =1 consists of
PR and PZRh patterns. The ® gure also implies thatm>1, m=1 and 1 >m>mc , the trivial solution is the

unique solution of the equation, where mc denotes a mc,n Õ mc,n+1 is a monotonically decreasing function of n,

and the limn � 2
mc,n=0, indicating that the number ofcritical value of elastic anisotropy. The stability of the

radial solution will be discussed later in this section. oscillatory solutions diverges as the elastic anisotropy
vanishes. Another important feature of the ® gure isMultiple oscillatory solutions, representing the home-

otropic zigzag radial pattern (PZRh) are found when the amplitude ordering and amplitude growth with
decreasing m. The amplitude of the shorter wave lengththe ratio exceeds a certain value of mc . For Du =1, we

found the critical value of mc=0 0́92. mode is smaller than the bigger wave length mode. As
typical of non-linear systems the amplitude growth isFigure 8 shows a section of the bifurcation diagram,

presented as the orientation amplitude (max |w | ) as a bounded.
Figure 9 shows the director orientation w as a functionfunction of the elastic ansitropy of m. The horizontal

(zero amplitude) line represents the radial (PR) solution of u , for m=0´01, in which there are three solutions of
PZRh (A, B, C) and one solution of PR (D). Figure 10and the ® ve curves represent members of the PZRh

family. The ® rst bifurcation branch A represents an shows the eleven solutions for m=0 0́01. As the ® gures
show, by changing m from 0 0́1 to 0 0́01, the number ofoscillatory solution with half-wavelength. The bifurca-

tion occurs at m=0´092, and the amplitude of the the oscillatory solutions has increased from four to
eleven. One can expect that as m approaches zero, thesolution grows as m decreases. At m=0´025, the system

bifurcates again and generates a new oscillatory solution number of branches will increase to in® nity, meaning
there will be in® nite solutions to the equation. However,branch B with one full wavelength. As m decreases

further, more branches are generated, representing solu- at any given ® nite value of m, there are only ® nite
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99Pattern formation in stretched discotic L Cs

Figure 6. Summary of representative solutions to equation (9) for Du =1, and di� erent parametric conditions. Symmetric
boundary conditions (top row), asymmetric boundary conditions of (w(1 ) =1 9́ (rad ) (middle row) and asymmetric boundary
conditions of w( 1 ) = p ( bottom row). For elastic anisotropy, m >1 ( left column) , m =1 ( left middle column) , 1> m> mc,1 (right
middle column) , and m< mc,1 (right column) .

number of solutions to the system. Note that ® gures 9 (PR), three oscillatory solutions (PRZh) with positive
initial slope, and their three mirror images. (For brevity,and 10 show that the solution with higher frequency has

smaller amplitude than those with lower frequency, we only show the oscillatory solutions with w ¾ ( 0 ) >0 in
® gure 9). It is clear from ® gure 11 that the above solu-which is a very important feature of the system.

As described in the previous section, the solutions are tions are all the solutions of equation (9) for m=0´01

and symmetric boundary conditions.found by solving the extended system of equations (12)
and initial conditions (13). In order to ® nd all the To compare simulations with actual ® bre textures (see,

for example, ® gure 1 and [3, 4, 6]), it is useful to plotsolutions to the system, we plot in ® gure 11 the func-
tional dependence of w ( 1 ) Õ w( 0 ) on w ¾ ( 0 ) , for m =0´01. the molecular trajectories, i.e. the curves that are ortho-

gonal to the local discotic director ® eld. Similar to theThe various horizontal lines correspond to various
values of w( 1 ) Õ w( 0 ) . The line C represents the symmet- streamline in ¯ uid dynamics, the trajectory satis® es the

geometrical relation: tan (y) (dr/dh ) = r, where y =ric boundary conditions studied in this section ( line A
and B are discussed below), for which w ( 1 ) =w( 0 ) =p/2. w Õ p/2. To ® nd the trajectory h(r) we integrate the

above di� erential equation using the previously com-To ® nd the number of solutions one can simply count
the intersections of the horizontal lines with the curve. puted director ® eld w (r). Here h is the usual polar angle

in cylindrical coordinates. Figure 12 shows the scienti® cFor line C, there are seven solutions: one trivial solution
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100 L. Wang and A. D. Rey

Figure 9. Director orientation w (rad ) as a function of dimen-
sionless distance u , for Du =1, m =0´01 and w( 1 ) = p/2.
Curve D denotes the PR solutions while curves A, B, and
C are members of PZRh family. The four solutions
correspond to the four intersections of the horizontal
line C with the curve in ® gure 11, for w ¾ (0 ) > 0. The three
mirror image oscillatory solutions are now shown.

Figure 7. Summary of representative solutions to equa-
tion (9) for Du= 1 ( left column) and Du= 3 (right column) ,
for di� erent outer boundary orientation, w(uo )= p/2
(upper row) and w(uo ) =1 7́7 (rad ) ( lower row). Here m=
0´15 is ® xed for all cases.

Figure 10. Director orientation w (rad ) as a function of
dimensionless distance u, for Du= 1, m= 0´001 and w( 1 ) =
p/2. For this relatively small value of m there are ten
oscillatory solutions (PZRh) and the radial (PR) solution.
Again, the mirror image oscillatory solutions are not
shown for clarity. Note the signi® cant increase in the

Figure 8. Bifurcation diagram. Amplitude of oscillatory solu- number of solutions as m changes from 0 0́1 (see ® gure 9 )
tions as a function of the elastic anisotropy m, for Du= 1 to 0 0́01.
and w( 1 ) = p/2. It shows multiple solution branching and
® nite amplitude growth as m decreases. The horizontal

visualizations of the curves A, B, C and D in ® gure 10.line corresponds to the ideal radial (PR) texture, while
the bifurcation branches correspond to the oscillatory The presence of spatial oscillations are clearly seen. In
zigzag radial (PZRh) texture. For m< 0´092 the PR solu- visualization A it is seen that the disk start with zero
tion is unstable. For m< 0´028 there are multiple oscillat- angle, indicating that the director angle is p/2. The
ory solutions.

trajectory shows an increase and then decrease of the dir-
ector angle, ending at the outer boundary with the same
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101Pattern formation in stretched discotic L Cs

angle as w( 0 ) . In visualization B, corresponding to the
solution with one full wavelength in ® gure 10, the oscilla-
tion is more visible. In visualizations C and D, there are
more oscillations but with smaller amplitude.

Next we discuss the solution branching and texture
behaviour of the PZRh pattern, for Du =2. Since u(rc ) =
1, this increment of Du corresponds to a larger outer
radius. Figure 13 shows the director orientation as a
function of u , for m=0´005, corresponding to four mem-
bers of the PZRh family. The ® gure shows that the main
features of the oscillatory solutions remain invariant.
For this parametric value we show four periodic
solutions, again with higher amplitude corresponding
to longer wavelength. Comparing the solution A in
® gure 13 to solution C in ® gure 10, it is seen that
increasing Du results in amplitude growth. Again, to
compare the theoretical results to actually patterns, we

Figure 11. Functional relation of the outer boundary orienta- use visualizations, computed as described above. We
tion w(uo ) and the initial slope w ¾ (0 ), for Du =1 and m = note that in the visualization we have, without loss of
0´01. w( 1 ) Õ w( 0 ): 0 (full line C); 0 1́20 ( long dashed line B);

information, kept the outer radius ® xed. Figure 14 shows0 2́98 (short dashed line A). Solutions to any value of
four visualizations (A, B, C, D) of members of the PZRhouter boundary orientation can be found by drawing a

horizontal line at the give value of w(uo ), the initial slope family, corresponding to the director pro® les shown in
of the soutions are given by the intersection of the line ® gure 13. The multiple solutions suggest multiple con-
and the curve. ® gurations for the same set of elastic constants K1 and

K3 , which in reality would mean abundant oscillatory
patterns. In these disk trajectories, we can see the ® nite
amplitude oscillation that certainly captures the basic
features of the cross-section of a mesophase carbon ® bre
displaying a radial zigzag texture (see ® gures 1 and 7
of [6]) .

Figure 13. Director orientation w (rad ) as a function of
dimensionless distance m, for Du =2, m =0´005, and w( 2 ) =

Figure 12. Scienti ® c visualizations of disk trajectories for the p/2. The four oscillatory zigzag radial solutions are mem-
bers of the PZRh family, and are locally stable solutionsoscillating zigzag (PRZh) solutions A, B, C, and D, shown

in ® gure 10. The trajectories represent lines (of constant to equation (9 ). Note the increase in amplitude for solu-
tions with the same wave number but with Du =1 (seeorientation) parallel to the molecular disks. Multiple

oscillations are visible in B, C, and D. ® gure 10).
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102 L. Wang and A. D. Rey

(dF )2 is the second variation. By letting (dF )1=0, we
® nd the extremum free energy con® guration w*.

Therefore, the sign of the increment DF coincides with
the sign of (dF )2 . Replacing f from equation (8), we
obtain the following integral:

(dF )2= P {[K3 Õ K1]

Ö (cos 2w Õ 2w ¾ sin 2w Õ w ¾ 2 cos 2w) (dw)2

+[K3 Õ K1] ( 2 cos 2w Õ 2w ¾ sin 2w)dwdw ¾

+ (K1 sin2 w+K3 cos2 w) (dw ¾ )2} du. (17)

Evaluating the integral for each of the numerical solu-
tions, we compute the second variation of the free energy
and thus are able to determine the free energy increment
induced by an arbitrary small perturbation. Figure 15
shows the second variation (dF )2 as a function of the
amplitude of an oscillatory solution belong to the PZRh
patterns. The parametric conditions are m=0´001 and
Du =1. The dots in ® gure 15 are second variations of
the oscillatory solutions whose director pro® les are
shown in ® gure 10. The ® gure shows that the secondFigure 14. Four scienti ® c visualizations of members of PZRh
variation is always positive. Therefore, based on thefamily of oscillatory zigzag radial solutions shown in
argument above, all the oscillatory solutions are locally® gure 13. Note the ® nite amplitude oscillations, as in

industrial mesophase carbon ® bres [6]. stable to small perturbations. We may conclude that the
oscillatory trajectories are the stable con® gurations for
this type of boundary condition, thus proving abundant

To establish the actual observability of the predicted multistability. As in other non-linear systems that exhibit
spatially oscillatory radial zigzag patterns, we have to multistability, a speci® c member of the PZRh family will
determine the stability properties of the numerical solu- be selected if the initial conditions are included in the
tions to equation (9). The most e� cient way to examine
the stability of the solutions obtained is to compute the
second variation of the free energy integral [20]. By
setting w(u) =w*(u)+dw(u) and expanding the free energy
F in power series of dw(u) up to the second order, we
get

DF= P [ f (w* +dw, w* ¾ +dw ¾ ) Õ f (w*, w* ¾ )] dm

= (dF )1+ (dF )2+ ´ ´ ´ (14)

where

(dF )1= P C q f

qw
Õ

d

du

q f

qw ¾Dw=w
*

du, (15)

and

(dF )2= P Cq2 f

qw2 (dw)2+2
q2 f

qw qw ¾
dwdw ¾

Figure 15. Second variation dF2 of the free energy as a
function of the amplitude for the oscillatory zigzag (PZRh)+

q2 f

qw2 (dw ¾ )Dw=w
*

du (16)
solutions shown in ® gure 10. Since dF2>0 the oscillatory
zigzag solutions are all locally stable, thus proving the
presence of multistability phenomena.where (dF )1 is the ® rst variation of the free energy, and
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103Pattern formation in stretched discotic L Cs

domain of attraction of that particular solution. Since that is l >0, then the free energy integral becomes
the domain of attractions of the various solutions are
function of (m, Du, w(uo ) Õ w( 0 )), a particular initial tex- DF=

1

2 P {(K1 Õ K3)d Õ K1d ² }d du= P ld 2 du
ture may evolve to di� erent members of the PZR family,

(23)according to the governing parameter values.
The second variation method is successful in estab- which is positive de® nite, and we can then determine

lishing the stability of the oscillatory solutions, however, the stability of the con® guration based on the previous
it fails for the trivial solution. In the integral (16), one argument. Solving the eigenvalue equation, we obtain
can see that substituting the trivial solution gives w* =
constant, dw=0, and dw ¾ =0, and thus the integral will

l=
1

2 GK1 Õ K3+1 A np

DuB2H; (n=1, 2, 3, . . . ) .
be zero. In fact, for the trivial solution any variation will
be identically zero. Therefore we cannot determine the

(24)stability of trivial solution under any given parametric
conditions using this method and have to use another It follows that if l <0, the pure bend (radial ) structure
analytical method. Consider a small perturbation on the will be unstable to any small perturbation. We ® nd the
constant solution [10], stability threshold of the radial texture is

w(u) =
p

2
+d(u) , (18) m<mc,n=

1

1+A np

DuB
2 ; (n =1, 2, 3, . . . ) (25)

where d(u) is a small perturbation which satis® es

Putting Du =1 and n =1 in the above inequality, wed( 0 ) =d( 1 ) =0. (19)
® nd mc,1=0 0́92, which is equal to the value of m

Substitute (18) into equation (8) and expand the result, corresponding to the bifurcation point found numeric-
then the energy density di� erence to second order is ally, reported above in this section. A comparison of
given by analytical values and the numerical values of mc,n is

shown in table 1. The excellent agreement validates the
f 2=

K1

2
(d 2+2d ¾ d+d ¾ 2 ) +

K3

2
(Õ d 2 Õ 2dd ¾ ) (20) correctness of the numerical results.

According to the general theory of eigenvalue prob-
Applying the above expression in the free energy integral, lems, the eigenvalues obtained for equation (22) present
using interpretation by parts, and taking into account the values of ln at which non-trivial solutions can be
the boundary condition of d(u) , the di� erence of the found. The existence of non-trivial solutions for these
total free energy will be values of ln , which corresponds to the values of mc,n ,

arise from the bifurcations of the constant solution
branch at these points. The exact correspondenceDF= P f 2 du
between the eigenvalues and the bifurcations is the
reason behind the consistency between analytical and

=
1

2 P {K1 (d 2+2dd ¾ +d ¾ 2) +K3(Õ d 2 Õ 2dd ¾ )} du numerical results, as shown in table 1. In addition, the
small amplitude oscillatory solutions can be closely
approximated by the corresponding eigenfunctions

=
1

2 P {(K1 Õ K3)d Õ K1d ² }d du. (21) derived above. A discussion giving the mathematical
details of the eigenvalue problem is given in the
Appendix.If the above integral is positive, then the con® guration

According to the inequality (25), the value of mc,1is stable to small perturbations. If the integral is positive,
it means any small perturbation will increase the total
free energy, thus the constant solution would be a local Table 1. Elastic anisotropy (m) thresholds for birth of
minimum of the free energy and therefore is stable to oscillatory modes.
any perturbation. To determine if the integral is positive,

mc,n Theoretical value Numerical valuewe therefore consider the following eigenvalue problem:

n =1 0 0́9199 0 0́9200K1 Õ K3

2
d Õ

K1

2
d ² =ld, (22) n =2 0 0́2470 0 0́2500

n =3 0 0́1113 0 0́1127
n =4 0 0́06293 0 0́06265with the boundary conditions of d( 0 )=d ( 1 ) =0. When
n =5 0 0́04036 0 0́03999

the above eigenvalue problem has positive eigenvalues,
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104 L. Wang and A. D. Rey

depends on Du. For all Du , mc,1 is always a positive values now are given by
number and mc,1 < k, where k <1. This means the
bifurcation will not occur as soon as K1<K3 , instead, l=

1

2 GK3 Õ K1+K3 A np

DuB2H, (n=1, 2, 3, . . . ) .

the trivial solution will be stable until the ratio K1 /K3
(30)exceeds a certain threshold mc,1 . As Du increases, mc,1

increases accordingly. So, for Du >1, the critical value It follows that, if K1<K3 , when the radial oscillatory
of mc,1 can be very close to 1. Therefore for relatively patterns are often observed, the eigenvalues in (30) will
large ® bres, a small elastic anisotropy of the type studied always be positive, and the onion pattern will be stable
here (m <1, that is, the bend constant larger than the to any small perturbations. Therefore, there is no oscillat-
splay constant) will induce a bifurcation in the equa- ory solution to the equilibrium equation under this type
tion (9), corresponding to a transformation between the of boundary and elastic anisotropy conditions. Hence
radial texture and the zigzag radial texture. This is a there will be no oscillations to the pure splay mode, any
reason for the frequent observation of oscillatory zigzag perturbations to this pattern will decay to zero, and a
textures in actual mesophase ® bres [6]. zigzag onion pattern would never occur, which is in

Although this paper is restricted to patterns that arise agreement with the facts.
from continuous transformations of the ideal pure bend
planar radial pattern, here we brie¯ y discuss a signi® cant 4.2. Solutions with asymmetric boundary conditions
fact regarding the stability of the onion patterns in the In this section we analyse the new features arising
presence of m<1 (see ® gure 1) since this has direct from non-symmetric boundary conditions w( 0 ) =p/2,
relevance to our objectives. In contrast to the frequently w( 1 ) =a, with p/2<a<p. The ® rst important feature is
observed zigzagging in radial patterns, oscillations and that the PR pattern does not exist, and its role is taken
zigzagging of the onion patterns have apparently not up by the planar pinwheel pattern PPW. Instabilities
been reported. It is thus important to explain this deduced by elastic anisotropies lead to bifurcations
absence, and at the same time establish that our criteria involving PPW and PZRn branches, here PZRn stands
that lead to the frequently observed PRZh patterns for planar non-homeotropic zigzag radial pattern (see
would not lead to zigzagging in the onion texture, thus ® gure 4).
adding validity to our analysis. The onion pattern is As shown in the second row of ® gure 6, for w( 1 ) =
found for symmetric boundary conditions: w( 0 )=w ( 1 ) = 1´869, the solution for m >1 is unique and monotonic.
0. The trivial soluton for this type of boundary condition For m=1, the solution is linear. We can derive this linear
is w=0. This type of con® guration represents a pure solution analytically. By setting K1=K3 in the equilib-
splay mode, that is, the concentric texture. To determine rium equation, we ® nd
its stability, we follow the same method elaborated

K1w ² =0 (31)above, and add a small perturbation d(u) to the trivial
solution, and the equation has a unique linear solution for K1=

K3 .
w=d(u) (26) For m<1, similar to the situation with symmetric

boundary conditions, the bifurcation will not occur until
with boundary condition of d( 0 )=d( 1 ) =0. Then to

m exceeds the critical value of mc,1 , but now mc,1 will be
second order, the perturbed energy is given by a function of w(uo ) as well as of Du. Figure 16 shows the

computed bifurcation diagram in the (m, w(uo )) plane.
f 2=

K1

2
(Õ d 2 Õ 2d ¾ d ) +

K3

2
(d 2+2d ¾ d+d ¾ 2) . (27) The full line denotes the bifurcation for Du =1; for

symmetric boundary condition, i.e. w( 1 ) =w( 0 ) =p/2, the
bifurcation occurs at mc,1=0´092. As w( 1 ) increases, theThus we obtain
critical value of bifurcation mc,1 decreases. Above the full
line, equation (9) has a unique locally stable monotonic

DF = P f 2 du =
1

2 P {(K3 Õ K1 )d Õ K3d ² }d du. solution (PPW), and below the full line the equation
has multiple locally stable solutions (PZRn). The dashed(28)
line denotes the bifurcation between PPW and PZRn,
for Du =2. Note the signi® cant increase of mc as DuSimilarly, we consider the eigenvalue problem of
increases. For Du=2 with symmetric boundary condi-
tions, the bifurcation occurs at m =0´285. When substi-K3 Õ K1

2
d Õ

K3

2
d ² =ld, (29) tuting Du=2 into the inequality (25), we obtain mc=

0 2́88, which agrees with the numerical results. Again
above the dashed line the locally stable solutions arewith boundary condition of d( 0 )=Ö d( 1 ) =0. The eigen-
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105Pattern formation in stretched discotic L Cs

Figure 16. Bifurcation diagram in the elastic anisotropy m
Figure 17. Director orientation w (rad ) as a function of u , forouter boundary condition plane. Fibre size Du= 1 (full

Du= 1, m =0´01 and w(1 ) =1´868. The two solutions areline), 2 (dashed line). The full (dashed) line divides the
members of the PZRn family. They correspond to the twoparametric plane into two solution regions. The one above
intersections of line A with the curve in ® gure 11.the line is where equation (9 ) has a unique solution, and

the one below the line as well as the line itself is
where the equation has multiple oscillatory solutions.

PPW solutions, while below the dashed line there are
multiple locally stable PZRn solutions.

For mc,1<m<1, the equation has a unique non-linear
monotonic solution, representing the PPW pattern. The
di� erence between solutions for m<1 and solutions for
m>1 is their concavity, as shown in the panels of the
middle row of ® gure 6. The change of concavity is due
to the change of elastic constants which make splay
deformation more favourable for K1<K3 , and bend
deformation favourable for K1>K3 . Below the dashed
line, when m <mc,1 , the system will have multiple solu-
tions. The functional relation of w ¾ ( 0 ) and w ( 1 ) shown
in ® gure 11 can also be used to ® nd the solutions for
asymmetric boundary conditions; line A corresponds to
w( 1 )=1´868761, and line B to w ( 1 ) =1´692094. As shown

Figure 18. Director orientation w (rad ) as a function of u , forin ® gure 11, there are two solutions for w ( 1 ) =1´868761,
Du= 1, m= 0´01 and w( 1 ) = 1´692. The four solutions areand four solutions for w( 1 )=1´692094. Figure 17 shows
members of the PZRn family. They correspond to the

the director orientation w as a function of u , for w( 1 ) = four intersections of line B with the curve in ® gure 11.
1´868761 and m =0´01, corresponding to the solutions
found from line A in ® gure 11. The two solutions are
members of the PZRn family, with the upper curve incomplete oscillation. For solution B and C in ® gure 18,

the oscillations in the disk trajectories are clearer.representing the ® rst mode and the lower curve the
second mode. Figure 18 shows the director orientation Again here we wish to explore the role of ® bre size

on the main features of the bifurcation and multistabilityw as a function of u , for w( 1 ) =1´692094 and m =0´01,

corresponding to the solutions found from line B in by plotting the trajectories of PPW and PZRn patterns.
Figure 20 shows four solutions for Du =2, m =0´005,® gure 11. The four solutions are members of the PZRn

family. Following the visualization methodology pre- and w( 2 )=1´8 (rad), which belong to the PZRn family.
The corresponding visualization of disk trajectories aresented above, ® gure 19 shows the disk trajectories for

the four solutions (A, B, C, D) shown in ® gure 18. Since shown in ® gure 21. Here, as in the previous section, an
increase in Du brings an increase in the amplitude in thesolutions A and D in ® gure 18 display incomplete oscilla-

tions, the corresponding disk trajectories also display oscillations. For the disk trajectories representing
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106 L. Wang and A. D. Rey

Figure 21. Scienti ® c visualizations of disk trajectories for theFigure 19. Scienti ® c visualizations of disk trajectories for the
oscillatory zigzag (PZRn) solutions A, B, C, and D, shown oscillatory zigzag (PZRn) solutions A, B, C, and D, shown

in ® gure 20.in ® gure 18. Finite amplitude oscillations are visible in B
and C. The di� erent spiral directions in A and D are due
to the di� erent values of w ¾ ( 0 ) for solutions A and D arise in the solution behaviour and multistability phen-in ® gure 18.

omena, in the presence of symmetric and asymmetric
boundary conditions. Figure 11 shows that the solutions
are not symmetric as in the case of symmetric boundary
conditions. For solutions with w( 1 ) =1´692094, the
mirror con® gurations are the solutions at w( 1 )mirror=
p Õ w( 1 ) . Another feature that is di� erent from the case
with symmetric boundary condition, is that as m decrease
further, the number of solutions will increase to a certain
® nite value, which depends on the value of boundary
orientation at the outer cylinder, as opposed to the
monotonic increase in the number of solutions (PZRh)
for symmetric boundary conditions. The reason is that
for oscillatory PZRn and PZRh solutions, the solution
amplitude has to be larger than w(uo ) Õ w ( 0 ) . However,
since a solution with higher frequency has smaller ampli-
tude, and the lowest possible amplitude would be
w(uo ) Õ w ( 0 ) , therefore even if m continues to decrease,
there will be no new solutions and the number of

Figure 20. Director orientation w (rad ) as a function of u, for solutions with amplitude larger than w (uo ) Õ w( 0 ) will
Du =2, m =0´005 and w( 2 )= p/2. The solutions are mem- therefore always be ® nite.
bers of the PZRn family. Note the amplitude increase for
these solutions in comparison to the PZRn solutions with

4.3. Solutions for asymmetric boundary conditions withthe same wave numbers but smaller Du (Du= 1) shown
in ® gure 18. large asymmetry

In this section we brie¯ y explore the new phenomena
that arise due to large asymmetry in the boundarysolution B and C in ® gure 20, one can clearly see the

oscillations to avoid free energy costs. conditions, and report on the representative case of
w(uo )=p. For the case with boundary condition ofIn the following we explore the main di� erences that
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107Pattern formation in stretched discotic L Cs

Table 2. Summary of parametric ranges and stabilityw( 0 )=p/2, w( 1 ) =p, we ® nd only one solution for all
properties of orientation textures.di� erent values of m, as shown in the third row of ® gure 6.

Again, the concavity of the solution will change as m Boundary
changes from m>1 to m<1. As m diverges (m � 2) the condition

w( 0 ) =p/2 m= K1 /K3 Solution type Figuressolution is boundary-layer like, with the boundary layer
located next to u =1. While when m vanishes (m � 0 ) the

w(uo ) =p/2 m> 1 PR 6boundary layer is located next to u =0. Figure 22 shows
stable

the director orientation w as a function of u , for three m= 1 PR 6
di� erent values of m : 1000 (dashed ), 1 (dotted ), and stable

mc< m< 1 PR 60 0́01 (full ) . The linear solution is obtained for K1=K3
stable(m=1 ), and the concavity of the other two curves is in

m< mc PZRh 9, 10, 14agreement with the expected boundary layer mode that
stable

minimizes the free energy. p/2<w(uo ) < p m> 1 PPW 6
For this type of boundary condition, there are no concaving up, stable

m= 1 PPW 6bifurcations in the equilibrium equation (9). As shown
stableabove, the amplitude of any oscillatory solution has to

mc< m< 1 PPW 6be larger or equal to w(uo ) Õ w (uo ) , which in the present
concaving down,

case is p/2. However, since the increase of frequency of stable
any solution will result in a decrease in amplitude and m< mc PZRh 17, 18, 20

stablethe existing monotonic solution has an amplitude of p/2,
w(uo ) =p m> 1 PPW 22any oscillatory solution would have to have an ampli-

concaving up,tude less than p/2, yet it has to have a maximum of
stable

w(uo ) =p in order to satisfy the boundary condition at m= 1 PPW 22
the outer cylinder. The contradiction makes the existence stable

m< 1 PPW 22of oscillatory solutions impossible. Therefore we can
concaving down,conclude that for this type of boundary conditions, there
stableexists no oscillatory solutions to equation (9) at any

value of m. PR: planar radial pattern, PZRh: homeotropic planar zigzag
In this section we have presented numerical results radial pattern, PZRn: non-homeotropic planar zigzag radial

pattern, PPW: planar pinwheel pattern.for three types of boundary conditions. A summary of
the results is shown in table 2. In general, for the

symmetric type of boundary conditions of w(uc ) =
w (uo ) =p/2, equation (9) has a unique constant solution
for m>mc,1 . When m<mc,1 , the constant solution
becomes unstable to small perturbations, the system
undergoes a bifurcation and generates a family of
branches of oscillatory solutions (PRZh). For the sym-
metric boundary condition of w(uc ) =w(uo ) =0, we have
shown that while m<1 there is only constant solution
to the equation. For asymmetric boundary conditions
with w(uc ) =p/2 and w(uo ) <p, the equation has a unique
monotonic solution (PPW) for m>mc . Particularly, at
K1=K3 , the equation has a unique linear solution. As
m<mc , the stem will bifurcate and generate branches of
oscillatory solutions (PZRn). For the symmetric bound-
ary condition of w(uo ) =p, there is a unique monotonic
solution (PPW) to the equation for all value of m.

5. Conclusions
Figure 22. Director orientation w (rad ) as a function of u, for In summary, we have presented a detailed numerical

Du =1 and w( 1 ) = p, for m : 0 0́01 (full line); 1 (dotted line); analysis to a model that is su� ciently accurate to provide
1000 (dashed line). For m1=1 (K1= K3) the solution is

plausible explanation to the pattern formation processlinear, for m1%1 (K1%K3 ) the solution is concave down,
that arises during the industrial melt ® bre spinning ofand for m1&1 (K1& K3 ) concave up, as dictated by energy

minimization. carbonaceous mesophases, using discotic nematic liquid
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108 L. Wang and A. D. Rey

crystal precursors. In addition, a comprehensive analysis for the same geometric conditions, non-homeotropic
boundary orientations would require a stronger elasticof pattern formation in discotic nematics con® ned to

an annular geometry has been presented. Analysis on anisotropy to induce oscillatory patterns, as shown in
the paper.the ¯ ow leads to the conclusion that the net e� ect of the

extensional ¯ ow in the ® bre spinning process on the To determine the stability of any solution, we com-
puted the corresponding second variation of the elastictexture formation is to keep the director in the y Õ r

transverse plane. Therefore, given su� cient long process energy. The oscillatory solutions (PZRi, i=n, h) to the
equilibrium equation are shown to be locally stable,times as compared to reorientation times, the transverse

radial zigzag pattern is selected by the minimization of whereas the stability of the trivial solution would depend
on the ratio of the elastic constants and the ratio of thethe splay± bend elastic free energy per unit ® bre length.

Numerical studies of the solution types to the equilib- radii of the outer cylinder and the inner cylinder, as
shown by analytical methods.rium equation (9) derived from Frank’s elastic energy

model indicate that the equilibrium equation displays a The interpretation of the numerical results using clas-
sical liquid crystal physics leads to explanations ofwide variety of solution types in the parametric space

spanned by the elastic anisotropy, the ® bre diameter, pattern formation phenomena that arise in an industrial
process. The elastic anisotropy, which is characterizedand the boundary conditions. The basic planar patterns

with singular cores are the radial pattern, the pinwheel by the ratio of the two elastic constants K1 and K3 ,

representing the splay and bend deformations, is shownpattern, and the zigzag radial pattern. Only the zigzag
radial pattern exhibits multistability. Multistability of to be the driving force behind the pattern selection

mechanism, that leads to the formation of the planaroscillatory solutions displaying the radial zigzag patterns
are found for: larger elastic anisotropy (K3>K1) , weaker zigzag pattern, frequently observed during ® bre spinning.
boundary condition asymmetries, and larger ® bres.

Numerical as well as analytical results show that the Appendix

occurrence of oscillations in radial patterns is due to the The objective of this appendix is to present the
elastic splay± bend anisotropy. This is because the energy mathematical analysis that correlates the eigenvalue
minimization process of the free energy would select the problem (22) with the bifurcations of equation (9). First
most cost-e� ective pattern to lower the total free energy. we introduce the required non-linear functional analysis
Therefore, as the bend con® guration becomes costly, the concepts. A non-linear mapping G from a Banach
system will naturally select splay deformation over space H to K is said to be FreÂ chet di� erentiable at a
the bend deformations. Another point to be noticed is point u provided there is a bounded linear operator A

the e� ect of ® bre size on the radial patterns. It is shown from H to K such that the quantity R (u; h) =
that larger ® bres have a much greater tendency than G (u+h ) Õ G (u) Õ Ah is o(h) as h � 0; that is
smaller ® bres to generate oscillatory radial patterns
under the same elastic anisotropy conditions. In this lim

dhd� 0

dR (u ; h) d

dh d
=0. (1 )

case, the pattern selected by the free energy minimization
process, is resisted by the e� ect of boundary orientation We denote by the FreÂ chet derivative of G at u by G ¾ (u)
constraints that is in favour of an energy costly mode. or by G

u
; when it exists it may be found by the usual

This is also the reason why oscillatory patterns will not formula of
arise as soon as the elastic constants become di� erent.
Instead, the driving force minimizing the free energy due

G ¾ (u)h = lim
t � 0

G (u+ th) Õ G (u)

t
=

d

dt
G (u+ th) |t=0 .to elastic anisotropy has to overcome the resistance due

to the boundary orientation constraint. As the ® bre size (2)
becomes larger, the e� ect of such boundary constraints

For a non-linear equation,is weakened. Therefore in larger ® bres the boundary
orientation will have smaller e� ect on pattern selection, G (w, m) =0 (3 )
and elastic anisotropy will have a stronger in¯ uence.

where G is a di� erentiable mapping between two BanachThus, oscillatory radial patterns will be easier to be
spaces H and K , that is, G : H Ö L � K , where L is aobserved in larger ® bres than in small ® bres. As for the
® nite dimensional parameter space. Suppose the oper-non-homeotropic case, in which the boundary orienta-
ator G has an equilibrium solution of (w0 , mc ) at whichtion is di� erent from the inner boundary orientation,

because the pattern consists of a splay± bend mode, the
G (w0 , mc ) =0 (4 )

selection of oscillatory patterns would have much less
e� ect on minimizing the free energy than it has on pure Whether the solution (w0 , mc ) is a bifurcation point is

given by the following Implicit Function T heorem [21].bend mode, for the same elastic anisotropy. Therefore,
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109Pattern formation in stretched discotic L Cs

Implicit function theorem 1 with the boundary conditions d( 0 ) =d(uo )=0. The
general solution of the eigenvalue problem is given byW ith the de® nition of the Banach space H , K and the

operator G given above we assume that G is FreÂ chet

dierentiable. T he FreÂ chet derivative of G at (w0 , mc ) , d(u) =B cosCA 1

m
Õ 1B1/2

uD+D sin CA 1

m
Õ 1B1/2

uD .
designated by G

w
(w0 , mc ) is a linear mapping G

w
: H � K .

(11)If G
w
(w0 , mc ) possesses a bounded inverse, then locally

for |m Õ mc | sucient small, there exists a dierentiable
The boundary condition d( 0 )=0 implies that B=0, so

mapping w(m) f rom L to H , with (w(m) , m) 5H Ö L , such
d(uo ) =0 gives the eigenvalue m :

that G (w(m) , m)=0. Furthermore, in a sucient small

neighbourhood of (w0 , mc ) , (w(m) , m) is the only solution to 1

m
Õ 1 =A np

DuB2

(12)G =0.
From the Implicit Function Theorem, it follows that

if G vanishes at (w0 , mc ) and G
w

is invertible there, then which gives
there is a locally smooth curve w(m) through (w0 , mc ) , and
this curve of w(m) is the unique solution of G at this mc,n=

1

1+A np

DuB2 , (n=1, 2, . . . ) (13)
point. Therefore a bifurcation can only occur, if the
linear mapping of G

w
, evaluated at (w0 , mc ) , is singular

and hence for a linear mapping A )G
w
(w0 , mc ) : H � K

and the corresponding eigenfunctions arethere is no inverse. If the above condition is met, one
can conclude that the solution (w0 , mc ) is a bifurcation
point. We rewrite the equation (9) as dn=Dn sin A np

Du
uB , (n =1, 2, . . . ). (14)

G (w, m) =w ² Õ
(Õ m+1 ) sin w cos w( 1 +w ¾ 2)

m sin2 w+cos2 w
=0 (5 ) Here D n are arbitrary constants which cannot be deter-

mined from the conditions given above. Now we consider
with the boundary conditions the equation [22]

w( 0 )=w (uo ) =
p

2
. (6) K1 Õ K3

2
d Õ

K1

2
d ² =ld (15)

Introducing the linear transformation w= (p/2)+d, we
which when dividing by K1 gives

have

d ² +G 2l

K1
Õ A1 Õ

1

mB H d=0. (16)G (d, m) =d ² +
(Õ m+1 ) sin d cos d( 1 +d ¾ 2 )

m cos2 d+ sin2 d
=0 (7 )

Since we are looking for l>0, the critical values of mcwith homogeneous boundary conditions
are to be found by setting l=0. Then the above equation

d( 0 ) =d(uo ) =0. (8 ) becomes identical to equation (10). So we proved that
equation (22) is the FreÂ chet derivative of equation (9)The above equation has a trivial solution of d0=0,

after the linear transformation (18). Following thefor all values of m. To examine the stability of the trivial
Implicit Function Theorem and the discussion, we cansolution d0 , we shall ® nd values of m, for which the
now conclude that the branch of the trivial solution (d=linear mapping A =G (d0 , m) does not have an inverse.
0, or w=p/2) has multiple bifurcations at the eigenvaluesHence we must look for the non-trivial solution of the
shown above. At the eigenvalues, the linear mapping ofcorresponding eigenvalue problem. The linear operator
G

d
in (10) becomes singular and doesn’t have an inverse.is obtained by taking the FreÂ chet derivative of (7):

It follows that the non-linear operator of G will have
Ad=G

d
(d0 , m)d=d ²

non-trivial solutions in the neighbourhood of mc,n . At
the bifurcation points mc,n , the non-trivial solution to

Õ
2 ( 1 +d ¾ 20 ) ( 1 Õ 2m+m2 Õ cos ( 2d0) +m2 cos ( 2d0))

( 1 +m Õ cos ( 2d0) +m cos ( 2d0))2 d. the linear mapping of G
d

are the eigenfunctions (14)
then we have(9)

Inserting the trivial solution d0=0 into this equation,
wn=dn+

p

2
=Dn sin A np

DuB+
p

2
, (n =1, 2, . . . ) .

we obtain the linear eigenvalue problem
(17)

G
d
( 0, m)d=d ² +A 1

m
Õ 1B d=0 (10)

For n =1, Du=1 and mc,1=0 0́92, we have the non-
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110 L. Wang and A. D. Rey

trivial solution of After integrating, we have

w1=Dn sin (pu)+
p

2
, (18) q (l Õ ln )

2
Õ

l

ln

q3

4
=0. (26)

which has a half wavelength and matches the numerical
solution found at mc,1 . Continuing this process for larger Therefore in a small neighbourhood of ln (l#ln ),

n, we ® nd that each eigenfunction matches the numerical the solution amplitude q and l have the following
solution at that point of mc,n . Using the Ljapunov± relationship:
Schmidt method [21], we can decompose d in the form

q = ( 2 (l Õ ln ))1/2, (n=1, 2, . . . ) . (27)d=dc+ds (19)

where Since l = (( 1/m) Õ 1 ), we ® nd that su� ciently close to
the bifurcation point, the amplitude q and the elastics

dc=q sin A np

Du
uB (20) anisotropy m are related by

and
q =A2

mc,n Õ m

mmc,n B1/2

, (n =1, 2, . . . ) . (28)
ds=h (q, u) . (21)

In (20), q is the amplitude of the oscillatory solution Equation (28) predicts that close to a bifurcation of
and h =O (q2) [21]. order n, the amplitude of the nth mode grows at a faster

Linearizing equation (7) and projecting it onto the (slower) rate for larger (smaller) n. This is in agreement
eigenfunctions, we ® nd with the numerical results shown in ® gure 8; by compar-

ing curve A (n =1 ) with curve C (n =3 ) we see that theP
u
c

0

[d ² +l(d+dd ¾ 2)] sin A np

Du
uB du=0. (22) amplitude grows faster in the latter case.

In summary, the contents of this appendix shows the
Here l= (( 1/m) Õ 1 ). Substituting (19) into the above mathematical analysis that explains the multiple bifurca-
integral, we ® nd tions at eigenvalues. By applying the Ljapunov± Schmidt

method [21], we also derive the relationship between
the solution amplitude and the elastic anisotropy.P

u
o

0 C q A Õ
n2p2

(Du)2 +lB sin A np

Du
uB+h ² +lh

+l Aq3
n2p2

(Du)2 sin A np

Du
uB cos2 A np

Du
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